The Troposphere-to-Stratosphere Transition in Kinetic Energy Spectra and Nonlinear Spectral Fluxes as Seen in ECMWF Analyses

نویسندگان

  • B. H. BURGESS
  • ANDRE R. ERLER
  • THEODORE G. SHEPHERD
چکیده

Global horizontal wavenumber kinetic energy spectra and spectral fluxes of rotational kinetic energy and enstrophy are computed for a range of vertical levels using a T799 ECMWF operational analysis. Above 250 hPa, the kinetic energy spectra exhibit a distinct break between steep and shallow spectral ranges, reminiscent of dual power-law spectra seen in aircraft data and high-resolution general circulation models. The break separates a large-scale ‘‘balanced’’ regime in which rotational flow strongly dominates divergent flow and a mesoscale ‘‘unbalanced’’ regime where divergent energy is comparable to or larger than rotational energy. Between 230 and 100 hPa, the spectral break shifts to larger scales (from n5 60 to n5 20, where n is spherical harmonic index) as the balanced component of the flow preferentially decays. The location of the break remains fairly stable throughout the stratosphere. The spectral break in the analysis occurs at somewhat larger scales than the break seen in aircraft data. Nonlinear spectral fluxes defined for the rotational component of the flow maximize between about 300 and 200 hPa. Large-scale turbulence thus centers on the extratropical tropopause region, within which there are two distinct mechanisms of upscale energy transfer: eddy–eddy interactions sourcing the transient energy peak in synoptic scales, and zonal mean–eddy interactions forcing the zonal flow. A well-defined downscale enstrophy flux is clearly evident at these altitudes. In the stratosphere, the transient energy peak moves to planetary scales and zonal mean–eddy interactions become dominant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equatorial wave analysis from SABER and ECMWF temperatures

Equatorial planetary scale wave modes such as Kelvin waves or Rossby-gravity waves are excited by convective processes in the troposphere. In this paper an analysis for these and other equatorial wave modes is carried out with special focus on the stratosphere using temperature data from the SABER satellite instrument as well as ECMWF temperatures. Space-time spectra of symmetric and antisymmet...

متن کامل

Mean radiative energy balance and vertical mass fluxes in the equatorial upper troposphere and lower stratosphere

[1] We use radiative transfer calculations to quantify vertical mass transport in the equatorial upper troposphere (UT) and lower stratosphere (LS), employing high resolution sonde measurements of temperature, ozone and water vapor at seven equatorial locations (10 S–10 N). The influence of clouds is examined using data from the International Satellite Cloud Climatology Project (ISCCP) and the ...

متن کامل

Power Spectral Analysis of Jupiter’s Clouds and Kinetic

21 We present suggestive evidence for an inverse energy cascade within Jupiter’s 22 atmosphere through a calculation of the power spectrum of its kinetic en23 ergy and its cloud patterns. Using Cassini observations, we composed full24 longitudinal mosaics of Jupiter’s atmosphere at several wavelengths. We 25 also utilized image pairs derived from these observations to generate full26 longitudin...

متن کامل

Numerical Results from a Nine - Level General Circulation Model of the Atmosphere

The " primitive equations of motion " are adopted for this study. The nine levels of the model are distributed so as to resolve surface boundary layer fluxes as well as radiative transfer by ozone, carbon dioxide, and water vapor. The lower boundary is a kinematically uniform land surface without any heat capacity. The stabilizing effect of moist convection is implicitly incorporated into the m...

متن کامل

Nonlinear Cascades of Surface Oceanic Geostrophic Kinetic Energy in the Frequency Domain*

Motivated by the ubiquity of time series in oceanic data, the relative lack of studies of geostrophic turbulence in the frequency domain, and the interest in quantifying the contributions of intrinsic nonlinearities to oceanic frequency spectra, this paper examines the spectra and spectral fluxes of surface oceanic geostrophic flows in the frequency domain. Spectra and spectral fluxes are compu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013